Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
1.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Assuntos
Bibenzilas , Colite Ulcerativa , Colite , Guaiacol/análogos & derivados , Camundongos , Animais , Antígenos CD18/metabolismo , Antígenos CD18/uso terapêutico , Colo , Quimiotaxia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Bibenzilas/farmacologia , Anti-Inflamatórios/efeitos adversos , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , NF-kappa B/metabolismo
2.
Food Res Int ; 182: 114179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519191

RESUMO

Co-culture fermentation with yeast and lactic acid bacteria (LAB) exhibits advantages in improving the bioactivity and flavor of wheat bran compared to single-culture fermentation, showing application potentials in bran-containing Chinese steamed bread (CSB). To explore the effects of combination of yeast and different LAB on the bioactivity and flavor of fermented wheat bran, this study analyzed the physicochemical properties, phytate degradation capacity, antioxidant activities, and aroma profile of wheat bran treated with co-culture fermentation by Saccharomycopsis fibuligera and eight different species of LAB. Further, the phenolic acid composition, antioxidant activities, texture properties, aroma profile, and sensory quality of CSB containing fermented wheat bran were evaluated. The results revealed that co-culture fermentation brought about three types of volatile characteristics for wheat bran, including ester-feature, alcohol and acid-feature, and phenol-feature, and the representative strain combinations for these characteristics were S. fibuligera with Limosilactobacillus fermentum, Pediococcus pentosaceus, and Latilactobacillus curvatus, respectively. Co-culture fermentation by S. fibuligera and L. fermentum for 36 h promoted acidification with a phytate degradation rate reaching 51.70 %, and improved the production of volatile ethyl esters with a relative content of 58.47 % in wheat bran. Wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus for 36 h had high relative content of 4-ethylguaiacol at 52.81 %, and exhibited strong antioxidant activities, with ABTS•+ and DPPH• scavenging rates at 65.87 % and 69.41 %, respectively, and ferric reducing antioxidant power (FRAP) at 37.91 µmol/g. In addition, CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. fermentum showed a large specific volume, soft texture, and pleasant aroma, and received high sensory scores. CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus, with high contents of 4-ethylguaiacol, 4-vinylguaiacol, ferulic acid, vanillin, syringaldehyde, and protocatechualdehyde, demonstrated strong antioxidant activities. This study is beneficial to the comprehensive utilization of wheat bran resources and provides novel insights into the enhancement of functions and quality for CSB.


Assuntos
Guaiacol/análogos & derivados , Lactobacillales , Saccharomycopsis , Lactobacillales/metabolismo , Pão/análise , Fibras na Dieta/análise , Odorantes , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Fítico , Técnicas de Cocultura , Fermentação , China
3.
Int J Biol Macromol ; 262(Pt 2): 130214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367781

RESUMO

Alicyclobacillus acidoterrestris has been gaining attention due to its unique thermo-acidophilic properties and being associated with the deterioration of pasteurized beverages. The objective of this study was to evaluate the antibacterial activity of chitosan with various molecular weights (MWs) (164, 85, 29.2, and 7.1 kDa) and concentrations (0-100 µg/mL) against A. acidoterrestris and its effect on guaiacol production. Various chitosan MWs were co-incubated for 7 days, and the bacterial growth, guaiacol, and vanillic acid contents during storage were determined. The chitosans performed antibacterial effects against A. acidoterrestris. Further, 164 kDa chitosan showed excellent results in controlling the growth and guaiacol formation in A. acidoterrestris. These findings demonstrated the efficacy of chitosan antibacterial activity against A. acidoterrestris and mitigating the guaiacol formation. Chitosan's antibacterial properties are attributed to the elimination of cells and suppression of guaiacol production. This study introduces a new approach for reducing A. acidoterrestris contamination in fruit juices, with potential product quality and safety advantages.


Assuntos
Alicyclobacillus , Quitosana , Citrus sinensis , Sucos de Frutas e Vegetais , Quitosana/farmacologia , Peso Molecular , Bebidas/análise , Guaiacol , Antibacterianos/farmacologia
4.
Biomed Res Int ; 2024: 8864513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304347

RESUMO

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Assuntos
Perda do Osso Alveolar , Clorofenóis , Pulpite , Cães , Humanos , Camundongos , Animais , Luteolina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Microtomografia por Raio-X , Proteômica , Inflamação/metabolismo , Guaiacol , Polpa Dentária/metabolismo
5.
Cell Biochem Funct ; 42(2): e3950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348768

RESUMO

Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-ß1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.


Assuntos
Guaiacol/análogos & derivados , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Ligantes , Desenvolvimento Sustentável , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Compostos Fitoquímicos
6.
J Agric Food Chem ; 72(2): 1136-1145, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183298

RESUMO

Lignin is a very attractive and abundant biopolymer with the potential to be a biorenewable source of a large number of value-added organic chemicals. The current state-of-the-art methods fail to provide efficient valorization of lignin in this regard without the involvement of harsh conditions and auxiliary substances that compromise the overall sustainability of the proposed processes. Making an original approach from the set of mildest temperature and pressure conditions, this work identifies and explores the capacity of an aqueous solution of the nonvolatile ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to partially depolymerize technical lignin (Indulin AT) by means of a treatment consisting in the simple contact at ambient temperature and pressure. Among a considerable number of valuable phenolic molecules that were identified in the resulting fluid, vanillin (yield of about 3 g/kg) and guaiacol (yield of about 1 g/kg) were the monophenolic compounds obtained in a higher concentration. The properties of the post-treatment solids recovered remain similar to those of the original lignin, although with a relatively lower abundance of guaiacyl units (in agreement with the generation of guaiacyl-derived phenolic molecules, such as vanillin and guaiacol). The assistance of the treatment with UV irradiation in the presence of nanoparticle catalysts does not lead to an improvement in the yields of phenolic compounds.


Assuntos
Benzaldeídos , Imidazóis , Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Temperatura , Biomassa , Água , Acetatos , Fenóis , Guaiacol
7.
Sci Rep ; 14(1): 2198, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272996

RESUMO

Phenols, and especially their nitrated analogues, are ubiquitous pollutants and known carcinogens which have already been linked to forest decline. Although nitrophenols have been widely recognized as harmful to different aquatic and terrestrial organisms, we could not find any literature assessing their toxicity to terrestrial plants. Maize (monocot) and sunflower (dicot) were exposed to phenolic pollutants, guaiacol (GUA) and 4-nitroguaiacol (4NG), through a hydroponics system under controlled conditions in a growth chamber. Their acute physiological response was studied during a two-week root exposure to different concentrations of xenobiotics (0.1, 1.0, and 10 mM). The exposure visibly affected plant growth and the effect increased with increasing xenobiotic concentration. In general, 4NG affected plants more than GUA. Moreover, sunflower exhibited an adaptive response, especially to low and moderate GUA concentrations. The integrity of both plant species deteriorated during the exposure: biomass and photochemical pigment content were significantly reduced, which reflected in the poorer photochemical efficiency of photosystem II. Our results imply that 4NG is taken up by sunflower plants, where it could enter a lignin biosynthesis pathway.


Assuntos
Poluentes Ambientais , Poluentes Ambientais/metabolismo , Guaiacol/química , Plantas/metabolismo
8.
Chem Biodivers ; 21(2): e202301930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216544

RESUMO

The aim of this study was to screen sixteen meso-1 semi-synthetic derivatives bearing ether, esther, carbamate, phosphate or aminoether functional groups against five cancer cell lines: MCF-7 (breast), A549 (lung), HepG2 (liver), HeLa (cervix), and DU145 (prostate) at 25 µM using the MTT assay. Results from the screening showed that two derivatives had the lowest percentage of cell viability at 25 µM, the aminoether derivative meso-11 and the esther derivative meso-20 against A549 (44.15±0.78 %) and MCF-7 (41.60±0.92 %), respectively. Then, it was determined the IC50 value of each compound against their most sensitive cancer cell line. Results showed that aminoether derivative meso-11 showed potent cytotoxicity against A549 (IC50 =17.11±2.11 µM), whereas it resulted more cytotoxic against the LL-47 lung normal cell line (IC50 =9.49±1.19 µM) having a Selective Index (SI) of 0.55. On the other hand, the esther derivative meso-20 exhibited potent activity against MCF-7 (IC50 =18.20±1.98 µM), whereas it displayed moderate cytotoxicity against the MCF-10 breast normal cell line (IC50 =41.22±2.17 µM) with a SI of 2.2. Finally, studies on the mechanism of action of meso-20 indicated disruption of MCF-7 plasma membrane in vitro and the AMPK activation in silico.


Assuntos
Antineoplásicos , Guaiacol/análogos & derivados , Lignanas , Masculino , Humanos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Lignanas/farmacologia , Proliferação de Células , Estrutura Molecular , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Células MCF-7
9.
J Environ Manage ; 352: 120152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266528

RESUMO

Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.


Assuntos
Compostos Férricos , Substâncias Húmicas , Peróxido de Hidrogênio , Substâncias Húmicas/análise , Biomassa , Carbono/química , Guaiacol
10.
Neurochem Res ; 49(2): 415-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864024

RESUMO

Morphine (MPH) is widely used for pain management; however, long-term MPH therapy results in antinociceptive tolerance and physical dependence, limiting its clinical use. Zingerone (ZIN) is a natural phenolic compound with neuroprotective effects. We investigated the effects of single and repeated doses of ZIN on MPH-induced tolerance, dependence, and underlying biochemical mechanisms. After a dose-response experiment, tolerance was developed to MPH (10 mg/kg, i.p.) for seven days. In the single-dose study, ZIN was administered on day seven. In the repeated-dose study, ZIN was administered for seven days. Naloxone (5 mg/kg, i.p., 120 min after MPH) was injected to assess withdrawal signs on day seven. The levels of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), total thiol (TT), and glutathione peroxidase (GPx) were measured in the prefrontal cortex. The protein levels of interleukin-1 beta (IL-1ß) and NLRP3-ASC-Caspase-1 axis were assessed by ELISA and Western blotting, respectively. Results showed that ZIN (100 mg/kg) had no antinociceptive activity, and subsequent experiments were performed at this dose. Repeated ZIN reversed MPH antinociceptive tolerance, whereas single ZIN did not. Single and repeated ZIN attenuated naloxone-induced jumping. In addition, repeated ZIN significantly inhibited weight loss. Repeated ZIN suppressed the MPH-induced increase in TBARS, NO, IL-1ß, NLRP3, ASC, and Caspase-1. It also inhibited MPH-induced TT and GPx reduction. In contrast, single ZIN had no effect. Findings suggest that ZIN reduces MPH-induced tolerance and dependence by suppressing oxidative stress and NLRP3 inflammasome activation. This study provides a novel therapeutic approach to reduce the side effects of MPH.


Assuntos
Guaiacol/análogos & derivados , Dependência de Morfina , Morfina , Camundongos , Animais , Morfina/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Naloxona/farmacologia , Naloxona/uso terapêutico , Estresse Oxidativo , Óxido Nítrico/metabolismo , Analgésicos/uso terapêutico , Caspases/metabolismo , Dependência de Morfina/metabolismo
11.
Immunopharmacol Immunotoxicol ; 46(1): 33-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37681978

RESUMO

OBJECTIVE: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.


Assuntos
Bibenzilas , Retinopatia Diabética , Guaiacol/análogos & derivados , NF-kappa B , Humanos , NF-kappa B/metabolismo , Glucose/toxicidade , Glucose/metabolismo , Transdução de Sinais , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Células Epiteliais , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
Food Chem ; 440: 138252, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160594

RESUMO

A balanced flavor is a major quality attribute of orange juice. Formation of 4-vinylguaiacol during storage can lead to an undesirable clove-like off-flavor. However, clove-like off-flavors were occasionally reported despite low 4-vinylguaiacol concentrations, suggesting an alternative molecular background. Application of gas chromatography-olfactometry and aroma extract dilution analysis to an orange juice with a pronounced clove-like off-flavor resulted in the identification of 5-vinylguaiacol. The compound showed the same odor as 4-vinylguaiacol, but was previously unknown in orange juice. In five of six commercial orange juices with clove-like off-flavors, 5-vinylguaiacol was even more odor-active than 4-vinylguaiacol. Spiking and model studies suggested that 5-vinylguaiacol is formed during pasteurization from the natural orange juice component hesperidin and residual peracetic acid used as cleaning agent by a Baeyer-Villiger oxidation. An activity-guided screening approach confirmed the role of hesperidin as 5-vinylguaiacol precursor. In conclusion, peracetic acid should no longer be used in orange juice processing plants.


Assuntos
Citrus sinensis , Guaiacol/análogos & derivados , Hesperidina , Syzygium , Citrus sinensis/química , Hesperidina/farmacologia , Ácido Peracético , Odorantes/análise
13.
J Agric Food Chem ; 71(50): 20222-20230, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054467

RESUMO

Spray coatings have shown promising potential in preventing the uptake of smoke phenols from wildfires into wine grapes. Three cellulose nanofiber-based coatings with low methoxyl pectin or varying concentrations of chitosan were made into films and their potential for blocking, absorption, or adsorption of phenols (guaiacol, m-cresol, and syringol) was evaluated using a custom-built smoke diffusion box. The coatings were also applied to Pinot noir grapes in a vineyard. GC-MS analysis for smoke phenols from headspace gases of diffusion study and extractions of films indicated that chitosan-based films can block guaiacol and syringol, and all films are able to capture m-cresol. The type of coating and application time in a vineyard did not affect (P < 0.05) physicochemical properties, size, and weight of the berries, whereas chitosan-based coatings resulted in a higher anthocyanin content of berries. This study provided new information about the key mechanisms (i.e., blocking phenols) of coatings to mitigate smoke phenol uptake in wine grapes.


Assuntos
Quitosana , Vitis , Vinho , Vitis/química , Fenóis/química , Vinho/análise , Adsorção , Fumaça/análise , Guaiacol , Frutas/química
14.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787393

RESUMO

Alicyclobacillus sp. DSM 11985T was isolated from geothermal soil but had not yet been classified at the species level. The strain produced guaiacol, which is of interest from the viewpoint of food spoilage in the food industry. 16S rRNA gene sequence analysis revealed that strain DSM 11985T was closely related (99.6 % similarity) to Alicyclobacillus hesperidum DSM 12489T. However, strains of A. hesperidum did not produce guaiacol; therefore, we performed the taxonomic characterization of strain DSM 11985T. The results showed that strain DSM 11985T and strains of A. hesperidum showed different phenotypic characteristics in biochemical/physiological tests including guaiacol production. Average nucleotide identity values between strain DSM 11985T and strain DSM 12489T were 95.4-95.9 %, and the in silico DNA-DNA hybridization value using the Genome-to-Genome Distance Calculator between strains DSM 11985T and DSM 12489T was 65.5 %. These values showed that strain DSM 11985T was genetically closely related but separated from strains of A. heparidum. From the above results, a novel subspecies of A. hesperidum, named Alicyclobacillus hesperidum subsp. aegles subsp. nov. is proposed. The type strain is DSM 11985T (=FR-12T=NBRC 113041T).


Assuntos
Aegle , Alicyclobacillus , Aegle/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Guaiacol , Hibridização de Ácido Nucleico
15.
Appl Environ Microbiol ; 89(10): e0052223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800939

RESUMO

Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.


Assuntos
Lignina , Rhodococcus , Lignina/metabolismo , Guaiacol/metabolismo , Fenóis/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
16.
Mol Med Rep ; 28(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37711057

RESUMO

Osteoarthritis (OA) is a degenerative disease that ultimately leads to joint deformity. The pathogenesis of OA is believed to involve abnormal chondrocyte death, with ferroptosis serving a key role in chondrocyte damage. The present study investigated whether acetyl zingerone (AZ), a newly identified antioxidant derived from curcumin, can alleviate the progression of OA. To investigate this, the present study performed various experiments, including crystal violet staining, flow cytometry, immunofluorescence and western blot analysis. In addition, dual validation was performed using in vivo and in vitro experiments; a mouse OA model was constructed for the in vivo experiments, and chondrocytes were used for the in vitro experiments. Destabilization of the medial meniscus (DMM) surgery was performed to establish an OA model in mice and IL­1ß was used to induce an OA model in vitro. The results indicated that AZ may promote chondrocyte viability and the expression of extracellular matrix components. Furthermore, AZ reduced the occurrence of ferroptosis by promoting the expression of glutathione peroxidase 4, inhibiting cartilage destruction and osteophyte formation, and alleviating damage to articular cartilage caused by DMM surgery. Mechanistically, the activation of nuclear factor erythroid 2­related factor 2 and heme oxygenase­1 may be responsible for the anti­ferroptosis effects of AZ on chondrocytes. These findings indicated that AZ may be considered a promising candidate for OA therapy.


Assuntos
Condrócitos , Ferroptose , Animais , Camundongos , Apoptose , Guaiacol , Modelos Animais de Doenças
17.
Biosens Bioelectron ; 238: 115606, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595476

RESUMO

The generation of guaiacol by Alicyclobacillus acidoterrestris (A. acidoterrestris) in fruit juices negatively affects public health and causes severe environmental pollution. Therefore, the sensitive detection and efficient degradation of guaiacol in real samples are crucial. Here, we develop an electrochemical sensor utilizing a copper single-atom nanozyme (CuN4-G) to detect and degrade guaiacol at the picomolar level. Density functional theory (DFT) calculations verify that the bonding electron coupling effect in the CuN4-G facilitates rapid electron transfer, enhances electrical conductivity, and provides abundant active sites, thereby leading to exceptional catalytic performance. Moreover, CuN4-G demonstrates a Km value similar to that of natural laccase but a higher Vmax, highlighting its potential as a highly efficient biocatalyst. The CuN4-G-based electrochemical sensor achieves a detection from 5 to 50,000 pM for guaiacol, with a 1.2 pM (S/N = 3) detection limit. Additionally, CuN4-G-modified electrodes display high selectivity and excellent stability. CuN4-G nanozyme can keep its activity in conditions of pH (3-9), temperature (30-90 °C), ionic strength (0-400 mM), and organic solvent (0-50% (v/v)), overcoming the deficiencies of natural enzymes. Furthermore, our electrochemical sensor can not only accurately detect guaiacol, but also degrade it in actual fruit juice samples infected by A. acidoterrestris, demonstrating its potential applications in food and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Guaiacol , Cobre , Elétrons , Lacase
18.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630267

RESUMO

Polymeric permselective films are frequently used for amperometric biosensors to prevent electroactive interference present in the target matrix. Phenylenediamines are the most commonly used for the deposition of shielding polymeric films against interfering species; however, even phenolic monomers have been utilized in the creation of these films for microsensors and biosensors. The purpose of this paper is to evaluate the performances of electrosynthesized polymers, layered by means of constant potential amperometry (CPA), of naturally occurring compound zingerone (ZING) and its dimer dehydrozingerone (ZING DIM), which was obtained by straight oxidative coupling reaction. The polymers showed interesting shielding characteristics against the main interfering species, such as ascorbic acid (AA): actually, polyZING exhibited an AA shielding aptitude comprised between 77.6 and 99.6%, comparable to that obtained with PPD. Moreover, a marked capability of increased monitoring of hydrogen peroxide (HP), when data were compared with bare metal results, was observed. In particular, polyZING showed increases ranging between 55.6 and 85.6%. In the present work, the molecular structures of the obtained polymers have been theorized and docking analyses were performed to understand their peculiar characteristics better. The structures were docked using the Lamarckian genetic algorithm (LGA). Glutamate biosensors based on those polymers were built, and their performances were compared with biosensors based on PPD, which is the most widespread polymer for the construction of amperometric biosensors.


Assuntos
Ácido Ascórbico , Guaiacol , Ácido Glutâmico , Polímeros
19.
Environ Sci Technol ; 57(30): 11173-11184, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462533

RESUMO

Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.


Assuntos
Poluentes Atmosféricos , Compostos de Ferro , Carbono , Aerossóis/análise , Compostos de Ferro/análise , Ferro , Guaiacol/análise , Poluentes Atmosféricos/análise
20.
J Biol Inorg Chem ; 28(6): 613-626, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507628

RESUMO

Five non-symbiotic hemoglobins (nsHb) have been identified in rice (Oryza sativa). Previous studies have shown that stress conditions can induce their overexpression, but the role of those globins is still unclear. To better understand the functions of nsHb, the reactivity of rice Hb1 toward hydrogen peroxide (H2O2) has been studied in vitro. Our results show that recombinant rice Hb1 dimerizes through dityrosine cross-links in the presence of H2O2. By site-directed mutagenesis, we suggest that tyrosine 112 located in the FG loop is involved in this dimerization. Interestingly, this residue is not conserved in the sequence of the five rice non-symbiotic hemoglobins. Stopped-flow spectrophotometric experiments have been performed to measure the catalytic constants of rice Hb and its variants using the oxidation of guaiacol. We have shown that Tyrosine112 is a residue that enhances the peroxidase activity of rice Hb1, since its replacement by an alananine leads to a decrease of guaiacol oxidation. In contrast, tyrosine 151, a conserved residue which is buried inside the heme pocket, reduces the protein reactivity. Indeed, the variant Tyr151Ala exhibits a higher peroxidase activity than the wild type. Interestingly, this residue affects the heme coordination and the replacement of the tyrosine by an alanine leads to the loss of the distal ligand. Therefore, even if the amino acid at position 151 does not participate to the formation of the dimer, this residue modulates the peroxidase activity and plays a role in the hexacoordinated state of the heme.


Assuntos
Oryza , Oryza/química , Oryza/metabolismo , Peróxido de Hidrogênio/farmacologia , Hemoglobinas/química , Heme/metabolismo , Antioxidantes , Tirosina , Guaiacol , Peroxidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...